Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549272

RESUMO

Cercospora leaf spot (CLS), caused by the hemibiotrophic fungus Cercospora beticola, is a destructive disease affecting table beet. Multiple applications of fungicides are needed to reduce epidemic progress to maintain foliar health and enable mechanized harvest. The sustainability of CLS control is threatened by the rapid development of fungicide resistance, the need to grow commercially acceptable yet CLS-susceptible cultivars, and the inability to manipulate agronomic conditions to mitigate disease risk. Nighttime applications of germicidal ultraviolet light (UV-C) have recently been used to suppress several plant diseases, notably those caused by ectoparasitic biotrophs such as powdery mildews. We evaluated the efficacy of nighttime applications of UV-C for suppression of CLS in table beet. In vitro lethality of UV-C to germinating conidia increased with increasing dose, with complete suppression at 1,000 J/m2. Greenhouse-grown table beet tolerated relatively high doses of UV-C without lethal effects despite some bronzing on the leaf blade. A UV-C dose >1,500 J/m2 resulted in phytotoxicity severities greater than 50%. UV-C exposure to ≤750 J/m2 resulted in negligible phytotoxicity. Older (6-week-old) greenhouse-grown plants were more susceptible to UV-C damage than younger (2- and 4-week-old) plants. Suppression of CLS by UV-C was greater when applied within 6 days of C. beticola inoculation than if delayed until 13 days after infection in greenhouse-grown plants. In field trials, there were significant linear relationships between UV-C dose and CLS control and phytotoxicity severity, and a significant negative linear relationship between phytotoxicity and CLS severity at the final assessment. Significant differences between UV-C doses on the severity of CLS and phytotoxicity indicated an efficacious dose near 800 J/m2. Collectively, these findings illustrate significant and substantial suppression by nighttime applications of UV-C for CLS control on table beet, with potential for incorporation in both conventional and organic table beet broadacre production systems.

2.
Accid Anal Prev ; 119: 23-28, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29990610

RESUMO

Reducing the potential for crashes involving front line service workers and passing vehicles is important for increasing worker safety in work zones and similar locations. Flashing yellow warning beacons are often used to protect, delineate, and provide visual information to drivers within and approaching work zones. A nighttime field study using simulated workers, with and without reflective vests, present outside trucks was conducted to evaluate the effects of different warning beacon intensities and flash frequencies. Interactions between intensity and flash frequency were also analyzed. This study determined that intensitiesof 25/2.5 cd and 150/15 cd (peak/trough intensity) provided the farthest detection distances of the simulated worker. Mean detection distances in response to a flash frequency of 1 Hz were not statistically different from those in response to 4 Hz flashing. Simulated workers wearing reflective vests were seen the farthest distances away from the trucks for all combinations of intensity and flash frequency.


Assuntos
Acidentes de Trânsito/prevenção & controle , Luz , Veículos Automotores , Saúde Ocupacional , Equipamentos de Proteção , Condução de Veículo , Humanos , Roupa de Proteção , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...